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Abstract

We report on a theoretical study wherein we considered a large number of ordered two-dimensional porous pillar arrays with different pillar
shapes and widely varying external porosity and calculated the flow resistance and the band broadening (under retentive conditions) over the
complete range of practical velocities using a commercial computational fluid dynamics software package. It is found that the performance of
the small porosity systems is very sensitive to the exact pillar shape, whereas this difference gradually disappears with increasing porosity. The
obtained separation impedances are very small in comparison to packed bed and monolithic columns and decrease with increasing porosity.
If accounting for the current micromachining limitations, a proper selection of the exact shape and porosity even becomes more critical, and
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ifferent design rules are obtained depending on whether porous or non-porous pillars are considered.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The packed bed of spheres, with its fixed particle shape
nd fixed external bed porosity (aroundε= 0.4), has for many
ecades been the undisputed chromatographic column for-
at. Since the introduction of radically new column man-
facturing concepts, cf. the various sol–gel techniques used

or the preparation of monolithic packing structures[1–5]and
he micromaching techniques Regniers’ group[6–8] used to
roduce their collocated monolithic support structures (CO-
OSS) column, the bed porosity and the particle shape have
ecome important new design parameters. With appropriate
ptimization, this additional design freedom could be used

o surpass the performance of the currently employed packed
ed columns. Due to the increased bed homogeneity, result-

ng from the fact that the particles are no longer put in place
y slurry-packing but are manufactured in situ by means of
hotolithographic etching techniques, it is especially the CO-
OSS approach which offers the largest potential increase in
erformance. Previous calculations by our group have shown

that if it would be possible to produce a perfectly ordered
ray of porous cylindrical pillars with an external porosity
ε= 0.4, reduced plate heights well below unity and sep
tion impedances as small as 200 would come within re
respectively a factor of 2 and 10 smaller than what is curre
achievable with the best possible packed beds[9]. This gain
is fully due to the reduction of theA-term band broadenin
A second potential advantage of the COMOSS concept
be found in the possibility to move away from the typi
ε= 0.4 porosity and round particle shape of the packed
of spheres. This could open the road towards the ach
ment of even larger separation resolutions and speeds.
is however, up to now, no real theoretical basis to decide
the optimal bed porosity and particle shape for such colu
Another problem is that the current generation of COMO
columns[8,10]are filled with non-porous pillars, leaving t
system with a very poor mass loadability and retention ca
ity. Columns consisting of perfectly ordered arrays of f
porous micro-pillars as discussed and schematically r
sented in[11] on the other hand would come very close
the ideal chromatographic system, provided they coul
∗ Corresponding author. Tel.: +32 2 6293327; fax: +32 2 6293248.
E-mail address:tw56620@vub.ac.be (J. De Smet).

manufactured with a sufficient depth and with a sufficient uni-
formity of the flow-through pore size. Although such porous
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pillar array columns do not exist yet, we hope to contribute to
the development of these systems by providing design rules
for the optimal bed porosity and particle shape and by point-
ing at the large potential advantage of such columns.

For this purpose, we have set up a theoretical study
wherein we considered a large number of different two-
dimensional (2D) porous pillar arrays with varying bed
porosity and particle shape and calculated their flow resis-
tance and band broadening (under retentive conditions) over
the complete range of practical velocities and characterised
them by determining the van Deemter or Knox parameters.
These calculations were carried out by means of a commer-
cial computational fluid dynamics (CFD) software package
(Fluent, v6.1.22), which has been extended with a num-
ber of self-written numerical routines[12,13] to simulate
the diffusion and adsorption processes inside the stationary
phase.

2. Considered geometries and numerical methods

In the present study, porous pillar array columns with three
different pillar shapes (cylinders, ellipsoids and diamonds)
and three different external porosities (ε= 0.4, ε= 0.6 and
ε= 0.8) have been considered. The lay-out of the different
p ram
( rid
a
r rticle
s ains
c e, as

has been pointed out in[6–14], these trans-channel coupling
points are needed to overcome the excessive band broad-
ening originating from small pore-to-pore width variations
which are inevitable, even when using the best possible cur-
rently existing etching processes. We recently confirmed this
on a hypothetical segmented column structure[12], show-
ing that even a flow-through pore variability of only a few
percent can already lead to a dramatic plate height increase
if the number of trans-channel coupling points is too small.
Given the difficulties to make any a priori assumptions on
the flow-through pore variability of a real, micro-machined
porous pillar array column, we therefore think it is critical
for any exercise on the determination of the ideal chromato-
graphic packing shape that the number of trans-channel cou-
pling points remains constant. Arrays with a porosity smaller
than 0.4 were not considered because such systems yield a
dramatic increase of the flow resistance, and arrays with a
porosity larger than 0.8 were not considered because such
systems would only have a very poor zone ratio (1− ε)/ε,
leading to poor retention capacities and mass loadabilities.

Apart from the obvious cylindrical pillar shape, we also
considered ellipsoidal and diamond-like pillars to investigate
the potential advantage of a more elongated and more stream-
lined shape. For the ellipsoids and the diamonds, the ratio of
their maximal lateral (dlat) and longitudinal dimension (dax)
w

√
-

u s
a ars,
w hich
i
o one

F the thr
( ids and ns
s

illar arrays was generated in a commercial CAD prog
Gambit v2.1), starting from an equilateral triangular g
nd putting a pillar centre on each grid point (Fig. 1). The
eader should note that by using the same grid for all pa
hapes, the number of trans-channel coupling points rem
onstant for all pillar shapes. This is important becaus

ig. 1. Overview of the unit cells and the calculated velocity fields for
c). For each porosity, three different pillar shapes (cylinders, ellipso
ize-case.
as rather arbitrarily put atdax/dlat = 3. Although other val
es certainly are possible, thedax/dlat =

√
3 ratio already give

significant elongation with respect to the cylindrical pill
ithout leading to too locally constricted pore spaces (w

s a problem for the ellipsoids in theε= 0.4 cases[9]), or with-
ut leading to a too strong reduction of the fluid contact z

ee different porosities considered pillar shapes:ε= 0.4 (a),ε= 0.6 (b) andε= 0.8
diamonds) are considered. Represented geometries are for the cotant domain
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Table 1
Overview of the most important geometrical and retention parameters of the
different considered structures

ddom deq dlat dpor τ k′′0 k′

0.4
Cylinder 1.23 1.00 1.00 0.23 1.22 0.75 0.714
Ellipsoid 1.23 1.00 0.76 0.13 1.05 0.75 0.714
Diamond 1.23 1.00 0.95 0.24 1.12 0.75 0.714
Plate 1.23 1.00 0.37 0.25 1.00 0.75 0.714

0.6
Cylinder 1.23 0.82 0.82 0.41 1.16 0.333 1.25
Ellipsoid 1.23 0.82 0.62 0.31 1.11 0.333 1.25
Diamond 1.23 0.82 0.78 0.38 1.10 0.333 1.25
Plate 1.23 0.82 0.25 0.37 1.00 0.333 1.25

0.8
Cylinder 1.23 0.58 0.58 0.64 1.09 0.125 1.667
Ellipsoid 1.23 0.58 0.44 0.56 1.07 0.125 1.667
Diamond 1.23 0.58 0.55 0.59 1.07 0.125 1.667
Plate 1.23 0.58 0.12 0.49 1.00 0.125 1.667

at the trans-channel coupling points.Fig. 1also shows that the
side of the equilateral triangle forming the basis for the pillar
arrangement is the straightforward measure for the domain
size (ddom), a measure often used to relate the performance of
monolithic silica columns with a different porosity and in the
literature on silica monoliths defined as the sum of the pillar
size and the size of the flow-through pore neck. In the present
study,ddom was nearly always put atddom= 1.23�m, except
for a number of control simulations wherein a 10 times larger
domain size was used.

With the above geometrical constraints, the different
porosity cases were generated by calculating the diameter
(cylindrical pillars) or the lateral width of the pillars needed
to obtain the desired volumetric solid zone fraction. The exact
geometrical data are listed inTable 1, together with a number
of other characteristic parameters. One of these parameters is
the equivalent cylinder diameter (deq), defined as the diame-
ter of the cylinder having the same cross-sectional areaAp as
the pillar shape under consideration:

deq =
√

4

π
Ap (1)

This equivalent cylinder diameter came out a previous
constant porosity case study[9] as one of the most suitable
characteristic dimensions to bring the van Deemter curves of
t

or the
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p -size
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o con-
s
r main
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i

Fig. 2. Reduced van Deemter plots of the band broadening data obtained
for the nine different considered porosity (full lines:ε= 0.4, striped lines:
ε= 0.6, dotted lines:ε= 0.8) and particle shape ((�) cylinders, ( ) ellipsoids,
(�) diamonds) combinations. The plate height values data were respectively
reduced with (a) the equivalent particle diameter (deq) and (b) the domain size
(ddom). The lines without any symbols represent the plate heights determined
via Eq.(9) for the parallel plate arrays. See text for further details.

After the generation of a suitable calculation grid (also
with the Gambit software), a commercial computational fluid
dynamics software package (Fluent, v.6.1) was used to solve
the full convection–diffusion material balances across the en-
tire flow domain. The total simulated flow domains consisted
of a series connection of 10 unit cells depicted inFig. 1.
So-called velocity-inlet and pressure-outlet conditions were
respectively imposed at the front and end plane of the flow do-
main. Along the sidewalls, a zero normal concentration gra-
dient condition was imposed. With this symmetry condition,
the considered flow domain behaves as if it were embedded in
an infinitely wide structure. For the same reason, the parts of
the sidewalls occupied by the fluid zone were subjected to a
slip flow boundary condition (zero normal velocity gradient)
to calculate the velocity field. At the surfaces of the porous
particles, a no-slip boundary condition (u= 0 at the wall sur-
face) was imposed to account for the flow arresting effect of
the solid pillar surfaces. Further setting up the problem in the
CFD-program, the pillar zones were defined as porous zones
with an infinitely large flow resistance. Each individual pil-
lar zone was subsequently also defined as being embedded
in a continuous fluid zone, the remaining surface area of the
unit cells. As already explained in[13], the software pack-
he different pillar shapes into close agreement.
It should be noted that the presented geometries are f

onstant domain size-case. Whereas in this case an in
f the external bed porosity corresponds to a shrinkage o
illars, the reader should note that in the constant pillar
ase an increasing bed porosity corresponds to an expa
f the through-pore distances and the domain size. The
tant particle size case is not represented inFig. 1, but the
eader should bear this difference with the constant do
ize case in mind when interpreting the plate height cu
n Fig. 2.
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age was extended with a number of self-written numerical
routines to simulate the diffusion and adsorption processes
inside the porous pillars. A first user defined function was
written to mimic the effect of the slow intra-particle diffusiv-
ity. The function was used to attribute the species entering the
stationary phase zones a diffusion coefficient different (i.e.,
smaller) from that in the fluid zone. In all presented cases,
the stationary zone diffusion coefficientDs was always put
at 5× 10−10 m2/s, whereas the mobile zone diffusion coeffi-
cient was always set atDm = 1× 10−9 m2/s. The liquid phase
viscosity was always put atη= 10−3 kg/(m s). A second user
defined function was used to subject the species zone to an
adsorptive reaction with equilibrium constantKwhen present
in the porous zone. In all simulations, a zone retention factor
of k′′ = 2 was imposed. It should be noted that under this con-
dition, and with the assumption that the internal porosity of
the pillars is constant and independent of the external poros-
ity, the different external porosity cases relate to separations
with a different phase retention factork′. The latter can be
calculated using:

k′ = k′′ − k′′0
1 + k′′0

, (2)

with the zone retention factork′′0 of the unretained species de-
termined by the known external (ε) and internal (εint) porosi-
t
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the flow resistance is obtained by plotting the observed pres-
sure drop gradient (�P/L) versus the linear velocity (u0) of
the unretained species. From the slope of these lines, it is then
straightforward to calculate the resulting column permeabil-
ities (Kv) and flow resistances (φ), using:

φ = d2
ref

Kv
and Kv = u0ηL

�P
(8)

whereindref can be any suitable characteristic dimension.
The column permeability in its turn can be used to calcu-

late the column’s separation impedance (E), which is a widely
used criterium for the efficiency of a column[16].

E = H2

Kv
= h2φ (9)

3. Results and discussion

Fig. 2a shows that, if the systems are compared on the ba-
sis of the same equivalent particle diameter, the plate heights
depend more strongly on the bed porosity than on the particle
shape, i.e., the plate height curves of the different considered
geometries are clearly grouped according to their porosity.
The influence of the particle shape is the largest in the small
p oros-
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′′
0 = 1 − ε

ε
εint (3)

The resultingk′′0 andk′-values are listed inTable 1. The re-
ation betweenk′′, k′′0 and the adsorption equilibrium const

is given by:

′′ = (1 +K)k′′0 (4)

The main output of the Fluent simulation program is
oncentration versus time response at 10 so-called det
lanes, regularly spaced along the flow domain. The reco
reak-through curves were subsequently numerically
rated to compute the mean retention time:

R,i =
∫
t dc∫
dc

(5)

nd the variance around this mean:

2
i =

∫
t2 dc∫
dc

− t2R,i (6)

With the knowledge of these two measures, the theore
late height governing the region between two subseq
etection planesi andj can be calculated using:

=
σ2
j − σ2

i

(tR,j − tR,i)2
Lij (7)

Apart from the band broadening, the performance li
f a chromatographic system are also determined by the
esistance. As is a common tradition in chromatography[15],
orosity case and gradually decreases with increasing p
ty, i.e., the difference between the different particle sh
s for example much smaller for theε= 0.8 case than fo
heε= 0.4 case. This can easily be understood from the
hat, with increasing bed porosity, the relative contributio
he mobile zone mass transfer resistance increases ov
f the stationary zone mass transfer resistance. This im

hat the differences in theCs-term contribution which exis
etween the different particle shapes[9] gradually becom

ess important at largerε and that the main band broaden
ontribution shifts to the mobile zone. Combining this w
he fact that the differences between the flow fields of
ifferent particle shapes are nearly completely vanishe

heε= 0.8 case (Fig. 1c), whereas they are quite signific
n theε= 0.4 case (Fig. 1a), the decreasing influence of
article shape at largeε becomes quite straightforward.

ComparingFig. 2a with Fig. 2b, it immediately jump
o the eye that the domain size brings the reduced
eight curves of the different porosity groups much cl

o each other than the equivalent particle diameter, alth
heε= 0.8 case plate heights still significantly deviate fr
heε= 0.4 and theε= 0.6 cases. Considering a given poro
roup, the relative difference between the different part
hapes remains identical to that inFig. 2a. This can be ex
lained from the fact that the domain size mainly expre

he differences in mass transfer distances between sma
arge porosity systems and does not contain all informa
bout the microscopic differences of the flow and diffus
eometry. Interpreting both observations in terms of the

ulness of the domain size as a measure to compare the p
ance of different monolith columns, it should be conclu
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that the domain size is a too simple measure to bring plate
height curves of different porosity systems into agreement.

On the other hand, cases with a different domain size but
with an identical porosity and relative pillar positioning are
expected to yield perfectly overlappingh-curves if reduced
to the domain size. As outlined by Giddings[17], geomet-
rically similar packings should yield perfectly overlapping
(h, ν)-curves if scaled to a characteristic distance allowing to
make the structures to perfectly overlap by simply rescaling
this characteristic distance. This has been verified by consid-
ering cases with a 10 times larger domain size but with an
identical porosity and relative pillar positioning. Reducing
the obtained plate heights by the domain size, these data also
coincide perfectly with theddom-reduced plate height curves.

As a reference, we also included the performance of the-
oretical plate heights for an array of parallel plates, theo-
retically the best performing LC system, but in practice un-
usable because channel-tot-channel width variations of only
1% limit the system[12,18], for which a well-established
analytical solution exists[19,20]:

H = 2Dm

u

(
1 + k′′ Ds

Dm

)
+ 2

210

(1 + 9k′′ + 25.5k′′2)

(1 + k′′)2
ud2

por

Dm

+ 2

3

k′′
′′ 2

ud2
lat

D
(10)
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This difference should be attributed to the much more homo-
geneous longitudinal distribution of the stationary zones in
the parallel plate case in comparison to the more point-like
distribution of the stationary zones in the pillar array sys-
tems, and it is the penalty one has to pay for the presence
of flow-through channel coupling points needed to overcome
any differences between the flow resistance of adjacent flow
channels, which will inevitably be present in any real flow
system.

To investigate the relative importance of the mobile and
the stationary zone mass transfer resistance, the mobile zone
contribution (Hmob) has been isolated by subtracting the the-
oretically knownB- andCs-term contributions from the total
plate height, yielding:

Hmob = H −HBtheo −HCs,theo (14)

with Btheo andCs,theo contributions respectively calculated
via Eqs.(15) and (16).

HBtheo = Btheo

u0
Dm with

Btheo = 2
1 + γszk

′′

1 + k′′0
and γsz = Dsz

Dm
(15)
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nd which is known to be the system with the smallest p
leE-number and plate heights. If comparing the pillar ar
ith the parallel plate systems, it should however be ke
ind that the latter does not allow for any trans-channel
ling, and will hence in practice turn out to be too sens

o small differences in channel width[12]. The values fordlat
nddpor used in Eq.(10)were respectively calculated as:

2dlat

ddom
= 1 − ε and

2dpor

ddom
= ε (11)

The flow resistance of the plate heights were calcul
rom the analytical pressure-drop expression for the flow
ween two parallel flat plates[21]:

p = 12ηLue

d2
por

(12)

Rearranging this expression, and combining it with
8), the following expression for theu0-based flow resistanc
s obtained (dref =ddom):

= 48(1+ k′′0)

ε2
(13)

Comparing now the parallel plate data with the pillar a
late heights, it can be concluded that a particulate su
tructure, even though it is perfectly ordered, always yie
ignificantly larger band broadening as compared to a pa
late system. The mobile zone mass transfer contributi
particulate, tortuous bed system is hence significantly

erent from that in an open-tubular parallel wall flow syst
Cs,theo = Csu0
d2

lat

Dm
with Cs = q

k′′(1 + k′′0)

(1 + k′′)2
1

γsz
(16)

The shape factorq in Eq. (16) has been determined a
ording to Giddings’ originalCs-calculation procedure[17],
ielding a value ofq= 1/16.00 for the cylinders,q= 1/10.98
or the ellipsoids andq= 1/19.28 for the diamonds. A fu
ccount of the calculation procedure is given in[9].

As can be noted fromFig. 3a, thehmob-values which ar
btained by reducingHmob with respect toddom are clearly
rouped in three very narrow bundles of curves, one for
alue ofε. This implies that the influence of the particle sh
s completely eliminated, which can only be explained
ssuming that the exact shape of the velocity field only p
minor role in the total plate height of perfectly ordered p
rray columns. It also implies that the differences betwee
ifferent particle shapes inFig. 2 are essentially due to th
ifferences in theCs-term of the different pillar shapes.

Dividing the hmob-contribution by the total plate heig
alues (Fig. 3b) it can clearly be noted that the relative con
ution of the mobile zone mass transfer resistance to the
late height increases from about 25% for theε= 0.4 case t
ver 85% for theε= 0.8 case. It can hence be concluded
he difference between the different particle shape-ind
elocity fields (cf.Fig. 1a) is overshadowed by the mu
arger difference in stationary zone mass transfer resis
n the case of smallε systems, whereas in the large poro
ase, where the mobile zone mass transfer resistance is
nant, the influence of the particle shape upon the velo
eld is so small that the difference between the pillar sh
s also nearly completely eliminated.
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Fig. 3. Variation of mobile phase band broadening contribution (hmob) with
ν for the different considered particle shapes (a) and variation of the ratio of
hmob/hwith ν (b). Same legend key used as inFig. 2.

Turning now to the flow resistance, the strong decrease
of the flow resistance observed when going from theε= 0.4
case to theε= 0.8 case (seeTable 2) is easy to understand and
is in full agreement with previous calculations[22] and with
the experimental observations in monolithic columns[23].
Whereas in the small porosity case the flow resistance is a
complex function of the bed tortuosity and the pore constric-

tion pattern[9], the flow resistance obviously depends much
less on the pillar shape in the largeε case, in agreement with
the smaller differences between the different velocity fields.

Chromatographic support systems are very often com-
pared on the basis of their separation impedance, combining
both the band broadening and the flow resistance effects[15].
ThisE-number owes its popularity and usefulness also to the
fact that it is independent of the employed geometrical refer-
ence basis, and to the fact that it is directly proportional to the
absolute minimal analysis time (i.e., if the particle size and
the column length are selected such that the column can be
operated at its minimal plate height velocity whilst exactly
yielding the required number of plates) needed to perform a
given separation[15]:

tR = N2η

�p
Emin(1 + k′) (17)

From Eq.(17) and from theEmin-values given inTable 1
it can clearly be concluded that the large porosity systems
potentially allow for much shorter analysis times than the
typicalε= 0.4. For all porosities, the sharper and more longi-
tudinally elongated diamonds perform better than the more
round ellipsoidal and circular pillars.

Comparing support performances on the basis of theE-
number alone is however not always realistic, as this analysis
i llar
o .
i n op-
t imal
e

d

i ues
f t

Table 2
Overview of the chromatographic performance parameters of the different c

Aa Ba Ca Btheo
b

0.4
Cylinder 0.032 2.261 0.042 2.2 4
Ellipsoid 0.013 2.279 0.038 2.2 8
Diamond 0.020 2.252 0.035 2.2 9
Plate 0.000 2.286 0.021 2.2 9

0.6
Cylinder 0.101 2.446 0.033 3.0 4
Ellipsoid 0.068 2.793 0.033 3.0 6
Diamond 0.065 2.676 0.032 3.0 8
Plate 0.000 3.000 0.019 3.0 1

0.8
Cylinder 0.204 1.961 0.038 3.5 1
Ellipsoid 0.197 2.348 0.036 3.5
Diamond 0.180 2.500 0.037 3.5 7
Plate 0.000 3.556 0.024 3.5 9

a Obtained by fitting Knox’ equation (Eq.(18)with n= 1/3 andC=Cs +Cm) to t

b Calculated via Eq.(15).
c Calculated via Eq.(16).
mplicitly assumes that supports with unlimitedly small pi
r domain sizes can be produced. Considering that Eq(17)

s established under the assumption that a system with a
imal equivalent pillar diameter is used, and that this opt
quivalent pillar diameter is given by[15]:

2
eq,opt =

φDmηN

�p
hminνopt (18)

t can easily be verified, by filling in the appropriate val
or the different parameters in Eq.(18), that in many relevan

onsidered pillar shapes

Cs
c φ hmin Emin

86 0.032 726 0.68 33
86 0.027 1003 0.61 37
86 0.024 655 0.60 23
86 0.012 525 0.43 9

00 0.016 171 0.85 12
00 0.014 145 0.77 8
00 0.012 155 0.75 8
00 0.004 178 0.48 4

56 0.007 53 1.15 7
56 0.006 43 1.13 55
56 0.005 48 1.10 5
56 0.001 84 0.58 2

heh-values shown inFig. 2b.
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cases the optimal effective pillar diameter is sub-micron. As
an example, it is found forN= 10,000 and forε= 0.6 that the
optimal diameter for the cylindrical pillars is only 0.26�m.
For ε= 0.8, the optimal pillar diameter is even only 0.20�m
large. It should hence be obvious that such values are im-
practically small, both from the view-point of mechanical
stability as from a pure micro-machining view-point. In or-
der to obtain a competitive mass loadability, porous pillar
array columns should preferentially be at least say 10�m
deep, and machining such thin pillar with such a large aspect
ratio is currently impossible. It should furthermore also be
noted that for anε= 0.6 array the minimal distance between
two pillars is still only roughly one half of the pillar diame-
ter. The distance between the pillars should therefore also be
considered as a limiting micromachining factor.

We found it therefore much more practically relevant to
consider an optimization exercise wherein the pillar size and
the distance between the pillars cannot be made smaller than
a given constant. Doing so, so-called Poppe plots[24] are
obtained. These plots are obtained by solving the following
set of equations as a function of the desired plate number:

h = Aνn + B

ν
+ Cmν + Csν, (19)

t
L ′ Nd2

ref h ′

ν

the
a ordi-
n e is
d .
( re
o ally,
e
p he
n
t alue.
F d
G fer-
e
s
c o
p
v t
a t a
f real
c
b le to
p
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b nt
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c

value of theε= 0.6 case using the following equation.

Neff = N
(1 + k′ref)

2

k′ref
2

k′2

(1 + k′)2 (22)

In Eq. (22), k′ref = 1.25 andk′ andN respectively are the
actual phase retention factor for which the given simulation
has been carried out (cf. thek′-values given inTable 1) and
the obtained plate number for that givenk′. Using Eq.(22), it
is ensured that the plate heights inFig. 4all refer to the same
separation resolutionRs.

The Poppe plot given inFig. 4a is for the case wherein
the smallest of the lateral pillar size and the minimal flow-
through pore size is put at 1�m, i.e., it is assumed that the
etching tolerances act on both the pillar size and the flow-
through pore, and that neither of both can be smaller than
1�m. For reasons of clarity, the curves for theε= 0.6 cases
have been omitted, and we suffice by saying that they all
lied between theε= 0.4 cases and theε= 0.8 cases. As can
be noted, anε= 0.8 array with either cylinders or diamonds
yields the shortest analysis times and allows to achieve larger
maximal plate numbers than theε= 0.4 arrays. In quantita-
tive terms, it can be concluded that a diamond pillar array
with ε= 0.8 yields a six times shorter analysis time than a di-
amond pillar array withε= 0.4. Theε= 0.8 array potentially
c tly
l r-

Fig. 4. Poppe plots for the porous pillar (a) and the non-porous (b) pillar
cases. The calculated values are for�P= 200 bar and fork′′ = 2 with a min-
imal limit for dlat anddpor of 1�m. Same legend key used as inFig. 2.
R =
u0

(1 + k ) =
Dm ν

(1 + k ) (20)

h = �pd2
ref

φDmηN
(21)

Eqs.(19)–(21)respectively determine the plate height,
nalysis time and the pressure-drop in dimensionless co
ates. The pressure-drop limited value of the analysis tim
etermined as the solution of Eqs.(20) and (21), using Eq
19)as the link betweenhandν. Due to the non-linear natu
f Eq. (1), this solution has to be established numeric
xcept for the cases whereinn= 0 orn= 1 in Eq.(19). In the
resent study, different values ofn were considered, and t
= 1/3 already put forward by Knox and Parcher[25] for

he packed bed of spheres turned out to yield the best v
ittings with other models, like then= 1 exponent couple
iddings equation (cf. the excellent overview of the dif
nt existing plate height equations given in[26]) yielded no
ignificant better fitting. Since most of theA- andC-values
ited in literature are for then= 1/3 Knox equation, we als
referred to stick to the latter. The obtainedA-, B- and C-
alues are given inTable 2. It is certainly noteworthy to poin
t the very smallA-term constant values, typically abou

actor 5–20 (depending on the porosity) smaller than in
olumns, pointing at the extreme reduction of theA-term band
roadening which can be expected if it would be possib
roduce perfectly homogeneous packings.

As the plate heights in the different porosity systems h
een obtained for the samek′′ and therefore all have a differe
′, the plate numbers used in Eqs.(20) and (21)have bee
orrected by replacingNbyNeff on the basis of thek′ = 1.25-
ould yield anNmax of about 700,000, which is significan
arger than theNmax∼= 200,000 for theε= 0.4 array. The pa
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allel plate array withε= 0.8 performs strikingly bad in the
smallN-range, although it has by far the smallest reduced
plate heights inFig. 2b. This poor performance can be ex-
plained from the fact that theε= 0.8 parallel plate case has
an extremely largedlat/ddom ratio (cf.Table 1). This implies
that if the lateral plate width is put at 1�m, the corresponding
dfmin andddom-values are significantly larger than in the other
cases. As a consequence, the total mass transfer distances in
this system are much larger than for the pillar arrays, who
all have a significantly smallerdlat/ddom ratio. From the three
pillar shapes, the ellipsoidal shape also is the shape with the
smallestdlat/ddom ratio, also explaining why the ellipsoidal
pillars withε= 0.8 perform significantly worse than the cylin-
ders and the diamonds. The parallel plate array is obviously
only suited in the largeN range, although it has to be re-
marked here that the parallel plate lines should only be con-
sidered as purely hypothetical results, because the absence
of any trans-channel coupling points makes the parallel plate
array extremely sensitive to the polydispersity problem ex-
tensively described in[12,18]and most probably limiting the
total plate number toN= 1000 or even less. It is also interest-
ing to note that theε= 0.4 arrays are much more sensitive to
the exact pillar shape than theε= 0.8 cases, in full agreement
with one’s physical expectations.

Since the single current pillar array systems are all non-
p rcise
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strongly on the exact pillar shape (for the small porosity sys-
tems) and on the porosity. The present study has also clearly
shown that manufacturing constraints can play a major role
in the potential performance of porous pillar array systems.
If one would be trying to produce such systems, it should be
kept in mind that the machining constraints on both the max-
imal lateral solid size and on the minimal flow-through pore
size lead to a situation wherein the most open-porous systems
yield the shortest analysis times over the entire range of plate
number. For non-porous pillar arrays on the other hand, the
small porosity systems are to be preferred over a range of
plate heights up toN= 200,000. In this small porosity case,
cylindrical and ellipsoidal pillars perform significantly worse
than diamond-like pillars.
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